Role of cell location and morphology in the mechanical environment around meniscal cells.

نویسندگان

  • Tumul Gupta
  • Tammy L Haut Donahue
چکیده

Fibrochondrocytes within meniscal tissue have been shown to alter their biochemical activity in response to changes in their mechanical environment. Meniscal tissue is known to contain both spherical (chondrocytic-like) and elliptical (fibroblastic-like) cells. We hypothesize that a cell's mechanical environment is governed by local material properties of the tissue around the cell, the cell morphology and the cell's position within the tissue. A two-dimensional, non-linear, fiber (collagen) reinforced, multi-scale, finite element model was utilized to quantify changes in the stress, strain, fluid velocity and fluid flow induced shear stress (FFISS) within and around fibrochondrocytes. Cells differing in morphology and size were modeled at different locations within an explant 6mm in diameter and 5mm thick, under 5% unconfined compression. Cellular stresses were an order of magnitude less than surrounding extracellular matrix stresses but cellular strains were higher. Cell size affected both the stress and strain levels within the cell, with smaller cells being exposed to smaller principal stresses and strains than larger cells of the same shape. The pericellular matrix of an elliptical cell was less effective at shielding the cell from large principal strains and stresses. FFISS were largest around small circular cells ( approximately 0.13Pa), and were dramatically affected by the position of the cell relative to the axis of the explant, with cells closer to the periphery experiencing greater FFISS than cells near the central axis of the explant. These results will allow biosynthetic activity of fibrochondrocytes to be correlated with position and morphology in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research Paper: Investigating Morphologic Changes and Viability of Rats’ Bone Marrow Mesenchymal Stem Cells in Microgravity

Introduction: Mesenchymal Stem Cells (MSCs) are multipotent cells capable of duplication and auto-recovery and distinction from various cells including chondrocytes, adipocytes, chondroblasts, fibroblasts, and osteoblasts. Human stem cells are always subject to local and external mechanical loads. External loads are caused by physical activity in external environment loading to infliction of st...

متن کامل

A finite elements study on the role of primary cilia in sensing mechanical stimuli to cells by calculating their response to the fluid flow

The primary cilium which is an organelle in nearly every cell in the vertebrate body extends out of the cell surface like an antenna and is known as cell sensor of mechanical and chemical stimuli. In previous numerical simulations, researchers modeled this organelle as a cantilevered beam attached to the cell surface. In the present study, however, we present a novel model that accommodates for...

متن کامل

Effect of Matrigel on Function and Morphology of Human Endometrial Epithelial Cell in vitro

The importance of extra cellular matrix (ECM) in development and function of different cells has been reported but little is known about its role in human endometrial epithelial cells. The aim of the present study was to examine effects of artificial ECM (Matrigel) and progesterone on the function and morphology of human endometrial epithelial cells in vitro. Methods: Endometrial samples were ...

متن کامل

Fabrication Of Cu(In,Ga)Se2 Solar Cells With In2S3 Buffer Layer By Two Stage Process

Cu(In,Ga)Se2 thin films (CIGS) on metallic substrate (titanium, molybdenum, aluminum, stainless steel) were prepared by a two-step selenization of Co-evaporated metallic precursors in Se-containing environment under N2 gas flow. Structural properties of prepared thin film were studied. To characterize the optical quality and intrinsic defect nature low-temperature photoluminescence, were perfor...

متن کامل

Nanoscale Mechanical Stimulation of Human Mesenchymal Stem Cells

Introduction: Mechanical stimulation of human mesenchymal stem cells has demonstrated changes in many cell behaviours such as adhesion, migration, growth and differentiation through mechanotransductive pathways. These include experiments on effect of nanotopography 1, shear stress, stiffness of extracellular matrix 2, strain, stress and acoustic wave energy 3 on cells. In this research we wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 2 5  شماره 

صفحات  -

تاریخ انتشار 2006